The Python Game Book

code games. learn Python.

User Tools

Site Tools


Sidebar

Github:

en:pygame:step017

Step 017 - Rotating, shooting, inheritance, physics

Time to play! The source code example below is an actual playable game, demonstrating several different concepts:

  1. Trigonometric_functions to rotate objects
  2. Inheritance to build classes out of existing classes.
  3. Elastic collision between to physical objects (birds, but reduced to physical disc's). <note important>Horst: what are physical discs?</note>

gameplay

screenshot of part2step017.py With the source code example below you can shoot down little penguins (again). This time, you steer a fat penguin and can rotate and move him with the <key>w</key>,<key>a</key>,<key>s</key>,<key>d</key> keys. The movement is relative to the facing of the fat penguin; by pressing <key>w</key> he will not move upwards, but instead forward depending on his actual rotation. You can still move sidewards by pressing <key>q</key> and <key>r</key>.

To calculate the forward movement of a rotated object in a cartesian (x,y) coordinate system some Trigonometric_functions are used. To make the game more interesting, some small penguins are also in the game. The player can shoot at them (using the <key>SPACE</key> key) and collide with them but should avoid the fragments when a small penguin explodes.

If a small penguin reaches the ground, he get some random “fuel”1) and moves upward (negative dy) until the “fuel” runs out. Gravity, that the player can turn on and off with the <key>g</key>, will suck penguins, shots and fragments down.

The small objects (penguins, shots) are pushed around by forces (boost, gravity, impact of shots and fragments or other penguins), leading to diagonal movement (dx and dy). While the rotation of the fat penguin dedicate it's movement, the movement of the small objects dedicate their rotation.

The goal of the game is too shoot down as many small penguins while trying to reach a 100% hit ratio. Each time one small penguin is killed a new one is created. The ratio of hits / misses will be calculated by the computer. The game ends if the gametime runs out or the player was hit by too much red fragments.

to tinker

  • change the constants (all in CAPITAL LETTER) like GRAVITY, FRICTION etc.
  • uncomment out-commented lines in Bird.areacheck to let birds bounce off walls
  • uncomment out-commented lines in Bird.speedcheck to introduce a general speed limit
  • give the small birds more “fuel” to fly higher: change self.boostmax in Bird.__init__

code discussion

some trigonometry for pygame

http://de.wikipedia.org/w/index.php?title=Datei:Winkelfunktionen_Einheitskreis.svg&filetimestamp=20061216174113 Unit circle from http://en.wikipedia.org/wiki/File:Unit_circle_angles.svg
How to calculate sine and cosine for angle x Radiand vs. Grad: 360° = 2 * π
π (Pi) = 3.1418….

While python will take care of most mathematics involved in rotating sprites for you, it may be a good to refresh some school wisdom. In this example games, those trigometric functions are used:

  • The sine: takes an angle (in radiant) as argument, returns the y coordinate
  • The cosine: takes an angle (in radiant) as argument, returns the x coordinate
  • The arctangent: takes a fraction as argument, returns an angle (in radiant)

As you can see in the drawing at the right side, sine is the vertical coordinate of a given point ( D in the diagram) on a unit circle2) while the cosine is the horizontal coordinate of the same point. The relation between those coordinates (vertical / horizontal) equals the tangent of the angle. The arctangent function is the inverse function of the tangent: arctangent takes the relation (y/x) as argument and returns the angle.

grad and radiant

There are several methods to measure the angle:

  • divide a full circle into 360 degrees (grad) or
  • divide a full circle into 2 times Pi 3)

While python's pygame module can handle basic rotation of sprites and surfaces using the 360 degree method, for calculating sine, cosine and arctangent, you need python's math module. Math functions use radians.

Two small functions help here:

import math
def radians_to_degrees(radians):
    return (radians / math.pi) * 180.0
def degrees_to_radians(degrees):
    return degrees * (math.pi / 180.0)

calculating direction for a given rotation

The player's class, BigBird knows the rotation of the sprite and need the movement vectors dx and dy to calculate. Here is the code, not-so important bits are omitted:

import math
GRAD = math.pi / 180
class BigBird(pygame.sprites.Sprites):
    #...
    def __init__(self):
        pressedkeys = pygame.key.get_pressed()
        self.ddx = 0.0
        self.ddy = 0.0
        if pressedkeys[pygame.K_w]: # forward
                         self.ddx = -math.sin(self.angle*GRAD) 
                         self.ddy = -math.cos(self.angle*GRAD) 
        if pressedkeys[pygame.K_s]: # backward
                         self.ddx = +math.sin(self.angle*GRAD) 
                         self.ddy = +math.cos(self.angle*GRAD) 
        if pressedkeys[pygame.K_e]: # right side
                         self.ddx = +math.cos(self.angle*GRAD)
                         self.ddy = -math.sin(self.angle*GRAD)
        if pressedkeys[pygame.K_q]: # left side
                         self.ddx = -math.cos(self.angle*GRAD) 
                         self.ddy = +math.sin(self.angle*GRAD) 
        #...
        self.dx += self.ddx * self.speed
        self.dy += self.ddy * self.speed
        #...
        self.pos[0] += self.dx * seconds
        self.pos[1] += self.dy * seconds
        #...

calculating rotation for a given direction

On the other hand, if you know dx and dy and need the fitting angle, you can use this code:

class Bullet(pygame.sprite.Sprite):
    #...
    def update(self, time):
        #...
        #--------- rotate into direction of movement ------------
        #--- calculate with math.atan ---
        #if self.dx != 0 and self.dy!=0:
        #        ratio = self.dy / self.dx
        #        if self.dx > 0:
        #            self.angle = -90-math.atan(ratio)/math.pi*180.0 # in grad
        #        else:
        #            self.angle = 90-math.atan(ratio)/math.pi*180.0 # in grad
        #--- or calculate with math.atan2 ---
        self.angle = math.atan2(-self.dx, -self.dy)/math.pi*180.0 
        self.image = pygame.transform.rotozoom(self.image0,self.angle,1.0)
Using math.atan2 function instead of math.atan save some code lines. You can view the documentation for the math module online at http://docs.python.org/library/math.html : <note> math.atan(x)

  Return the arc tangent of x, in radians.

math.atan2(y, x)

  Return atan(y / x), in radians. The result is between -pi and pi.  
  The vector in the plane from the origin to point (x, y) makes
  this angle with the positive X axis. 
  
  The point of atan2() is that the signs of both inputs are known 
  to it, so it can compute the correct quadrant for the angle. For
  example, atan(1) and atan2(1, 1) are both pi/4, 
  but atan2(-1, -1) is -3*pi/4.

</note>

using class inheritance

class chart 17 In this code example exist 2 kinds of birds: The big (fat) BigBird and many smalle SmallBird's. Both have a common parent class Bird. Bird in turn is a child class of the pygame.sprite.Sprite class.

The very useful Fragment class serves as a parent class for the BlueFragment class, the RedFragment class, the Smoke class and the Shot class.

elastic collision

Inside the game's mainloop is a tiny “physic engine” in use: It checks with a crashgroup if one bird is actually crashing into another bird. If so, both birds move away from each other.

This could be done with less sophisticated code like in the previous examples, like by simply giving the crashbird's new random values for dx and dy. However Lenoard Michlmayr was so nice to help me out here with some code for an elastic collision:

elastic collision. Source: Wikipedia http://upload.wikimedia.org/wikipedia/commons/c/c6/Elastischer_sto%C3%9F.gif

Note that to simplify the calculation, each bird is calculated as a disc. Also in the very special case that there is no speed (like if one bird is “beamed” into another bird) some random values for dx and dy are created.

# ...
    def elastic_collision(sprite1, sprite2):
        """elasitc collision between 2 sprites (calculated as disc's).
           The function alters the dx and dy movement vectors of both sprites.
           The sprites need the property .mass, .radius, .pos[0], .pos[1], .dx, dy
           pos[0] is the x postion, pos[1] the y position"""
        # here we do some physics: the elastic
        # collision
        #
        # first we get the direction of the push.
        # Let's assume that the sprites are disk
        # shaped, so the direction of the force is
        # the direction of the distance.
        dirx = sprite1.pos[0] - sprite2.pos[0]
        diry = sprite1.pos[1] - sprite2.pos[1]
        #
        # the velocity of the centre of mass
        sumofmasses = sprite1.mass + sprite2.mass
        sx = (sprite1.dx * sprite1.mass + sprite2.dx * sprite2.mass) / sumofmasses
        sy = (sprite1.dy * sprite1.mass + sprite2.dy * sprite2.mass) / sumofmasses
        # if we sutract the velocity of the centre
        # of mass from the velocity of the sprite,
        # we get it's velocity relative to the
        # centre of mass. And relative to the
        # centre of mass, it looks just like the
        # sprite is hitting a mirror.
        #
        bdxs = sprite2.dx - sx
        bdys = sprite2.dy - sy
        cbdxs = sprite1.dx - sx
        cbdys = sprite1.dy - sy
        # (dirx,diry) is perpendicular to the mirror
        # surface. We use the dot product to
        # project to that direction.
        distancesquare = dirx * dirx + diry * diry
        if distancesquare == 0:
            # no distance? this should not happen,
            # but just in case, we choose a random
            # direction
            dirx = random.randint(0,11) - 5.5
            diry = random.randint(0,11) - 5.5
            distancesquare = dirx * dirx + diry * diry
        dp = (bdxs * dirx + bdys * diry) # scalar product
        dp /= distancesquare # divide by distance * distance.
        cdp = (cbdxs * dirx + cbdys * diry)
        cdp /= distancesquare
        # We are done. (dirx * dp, diry * dp) is
        # the projection of the velocity
        # perpendicular to the virtual mirror
        # surface. Subtract it twice to get the
        # new direction.
        #
        # Only collide if the sprites are moving
        # towards each other: dp > 0
        if dp > 0:
            sprite2.dx -= 2 * dirx * dp 
            sprite2.dy -= 2 * diry * dp
            sprite1.dx -= 2 * dirx * cdp 
            sprite1.dy -= 2 * diry * cdp

The function is called with 2 sprites as arguments during the mainloop. Note that the elastic_collision function has no return values but instead manipulates the .dx and .dy properties (the movement vectors) of both sprites.

# ... inside mainloop
        # ------ collision detection
        for bird in birdgroup:  # test if a bird collides with another bird
            bird.crashing = False # make bird NOT blue
            # check the Bird.number to make sure the bird is not crashing with himself
            if not bird.waiting: # do not check birds outside the screen
                crashgroup = pygame.sprite.spritecollide(bird, birdgroup, False )
                for crashbird in crashgroup:  # test bird with other bird collision
                    if crashbird.number > bird.number: #avoid checking twice
                        bird.crashing = True # make bird blue
                        crashbird.crashing = True # make other bird blue
                        if not (bird.waiting or crashbird.waiting):
                            elastic_collision(crashbird, bird) # change dx and dy of both birds

source code on github

To run this example you need:

file in folder download
017_turning_and_physic.py pygame Download the whole Archive with all files from Github:
https://github.com/horstjens/ThePythonGameBook/archives/master
babytux.png
babytux.png
pygame/data
babytux_neg.png
babytux_neg.png
pygame/data
claws.ogg
from Battle of Wesnoth
pygame/data
wormhole.ogg pygame/data
bomb.ogg pygame/data
shoot.ogg pygame/data
beep.ogg pygame/data

View/Edit/Download the file directly in Github: https://github.com/horstjens/ThePythonGameBook/blob/master/pygame/017_turning_and_physic.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
017_turning_and_physic.py
pygame sprites primitive physic (elastic collision)
url: http://thepythongamebook.com/en:part2:pygame:step017
author: horst.jens@spielend-programmieren.at
physic by Leonard Michlmayr
licence: gpl, see http://www.gnu.org/licenses/gpl.html

move the big bird around with the keys w,a,s,d  and q and e
fire with space, toggle gravity with g

works with pyhton3.4 and python2.7
"""
#the next line is only needed for python2.x and not necessary for python3.x
from __future__ import print_function, division

import menu1


def game(folder = "data"):
    import pygame
    import os
    import random
    import math 
    #------ starting pygame -------------
    pygame.mixer.pre_init(44100, -16, 2, 2048) # setup mixer to avoid sound lag
    pygame.init()
    screen=pygame.display.set_mode((640,480)) # try out larger values and see what happens !
    #winstyle = 0  # |FULLSCREEN # Set the display mode
    print("pygame version", pygame.ver)
    # ------- game constants ----------------------
    BIRDSPEEDMAX = 200
    FRAGMENTMAXSPEED = 200
    FRICTION =.991  # between 1 and 0. 1 means no friction at all (deep space)
    FORCE_OF_GRAVITY = 2.81 # pixel per second square earth: 9.81 m/s²
    GRAD = math.pi / 180 # 2 * pi / 360   # math module needs Radiant instead of Grad
    # ----------- functions -----------
    def write(msg="pygame is cool", color=(0,0,0)):
        """write text into pygame surfaces"""
        myfont = pygame.font.SysFont("None", 32)
        mytext = myfont.render(msg, True, color)
        mytext = mytext.convert_alpha()
        return mytext
    def getclassname(class_instance):
        """this function extract the class name of a class instance.
        For an instance of a XWing class, it will return 'XWing'."""
        text = str(class_instance.__class__) # like "<class '__main__.XWing'>"
        parts = text.split(".") # like ["<class '__main__","XWing'>"]
        return parts[-1][0:-2] # from the last (-1) part, take all but the last 2 chars
    
    def elastic_collision(sprite1, sprite2):
        """elasitc collision between 2 sprites (calculated as disc's).
           The function alters the dx and dy movement vectors of both sprites.
           The sprites need the property .mass, .radius, .pos[0], .pos[1], .dx, dy
           pos[0] is the x postion, pos[1] the y position"""
        # here we do some physics: the elastic
        # collision
        #
        # first we get the direction of the push.
        # Let's assume that the sprites are disk
        # shaped, so the direction of the force is
        # the direction of the distance.
        dirx = sprite1.pos[0] - sprite2.pos[0]
        diry = sprite1.pos[1] - sprite2.pos[1]
        #
        # the velocity of the centre of mass
        sumofmasses = sprite1.mass + sprite2.mass
        sx = (sprite1.dx * sprite1.mass + sprite2.dx * sprite2.mass) / sumofmasses
        sy = (sprite1.dy * sprite1.mass + sprite2.dy * sprite2.mass) / sumofmasses
        # if we sutract the velocity of the centre
        # of mass from the velocity of the sprite,
        # we get it's velocity relative to the
        # centre of mass. And relative to the
        # centre of mass, it looks just like the
        # sprite is hitting a mirror.
        #
        bdxs = sprite2.dx - sx
        bdys = sprite2.dy - sy
        cbdxs = sprite1.dx - sx
        cbdys = sprite1.dy - sy
        # (dirx,diry) is perpendicular to the mirror
        # surface. We use the dot product to
        # project to that direction.
        distancesquare = dirx * dirx + diry * diry
        if distancesquare == 0:
            # no distance? this should not happen,
            # but just in case, we choose a random
            # direction
            dirx = random.randint(0,11) - 5.5
            diry = random.randint(0,11) - 5.5
            distancesquare = dirx * dirx + diry * diry
        dp = (bdxs * dirx + bdys * diry) # scalar product
        dp /= distancesquare # divide by distance * distance.
        cdp = (cbdxs * dirx + cbdys * diry)
        cdp /= distancesquare
        # We are done. (dirx * dp, diry * dp) is
        # the projection of the velocity
        # perpendicular to the virtual mirror
        # surface. Subtract it twice to get the
        # new direction.
        #
        # Only collide if the sprites are moving
        # towards each other: dp > 0
        if dp > 0:
            sprite2.dx -= 2 * dirx * dp 
            sprite2.dy -= 2 * diry * dp
            sprite1.dx -= 2 * dirx * cdp 
            sprite1.dy -= 2 * diry * cdp
    # ----------- classes ------------------------
    class Text(pygame.sprite.Sprite):
        """a pygame Sprite displaying text"""
        def __init__(self, msg="The Python Game Book", color=(0,0,0)):
            self.groups = allgroup
            self._layer = 1
            pygame.sprite.Sprite.__init__(self, self.groups)
            self.newmsg(msg,color)
            
        def update(self, time):
            pass # allgroup sprites need update method that accept time
        
        def newmsg(self, msg, color=(0,0,0)):
            self.image =  write(msg,color)
            self.rect = self.image.get_rect()

    class Lifebar(pygame.sprite.Sprite):
        """shows a bar with the hitpoints of a Bird sprite
           with a given bossnumber, the Lifebar class can 
           identify the boos (Bird sprite) with this codeline:
           Bird.birds[bossnumber] """
        def __init__(self, boss):
            self.groups = allgroup
            self.boss = boss
            self._layer = self.boss._layer
            pygame.sprite.Sprite.__init__(self, self.groups)
            self.oldpercent = 0
            self.paint()
            
        def paint(self):
            self.image = pygame.Surface((self.boss.rect.width,7))
            self.image.set_colorkey((0,0,0)) # black transparent
            pygame.draw.rect(self.image, (0,255,0), (0,0,self.boss.rect.width,7),1)
            self.rect = self.image.get_rect()
 
        def update(self, time):
            self.percent = self.boss.hitpoints / self.boss.hitpointsfull * 1.0
            if self.percent != self.oldpercent:
                self.paint() # important ! boss.rect.width may have changed (because rotating)
                pygame.draw.rect(self.image, (0,0,0), (1,1,self.boss.rect.width-2,5)) # fill black
                pygame.draw.rect(self.image, (0,255,0), (1,1,
                                 int(self.boss.rect.width * self.percent),5),0) # fill green
            self.oldpercent = self.percent
            self.rect.centerx = self.boss.rect.centerx
            self.rect.centery = self.boss.rect.centery - self.boss.rect.height /2 - 10
            if self.boss.hitpoints < 1:   #check if boss is still alive
                self.kill() # kill the hitbar
       
    class Bird(pygame.sprite.Sprite):
        """generic Bird class, to be called from SmallBird and BigBird"""
        image=[]  # list of all images
        birds = {} # a dictionary of all Birds, each Bird has its own number
        number = 0  
        waittime = 1.0 # seconds
        def __init__(self, layer = 4, bigbird = False ):
            self.groups = birdgroup, allgroup, gravitygroup # assign groups 
            self._layer = layer                   # assign level
            #self.layer = layer
            pygame.sprite.Sprite.__init__(self,  self.groups  ) #call parent class. NEVER FORGET !
            self.pos = [random.randint(50,screen.get_width()-50),
                        random.randint(25,screen.get_height()-25)] 
            self.area = screen.get_rect()
            self.image = Bird.image[2]
            self.image = Bird.image[0]
            self.hitpointsfull = float(30) # maximal hitpoints
            self.hitpoints = float(30) # actual hitpoints
            self.rect = self.image.get_rect()
            self.radius = max(self.rect.width, self.rect.height) / 2.0
            self.dx = 0   # wait at the beginning
            self.dy = 0            
            self.waittime = Bird.waittime # 1.0 # one second
            self.lifetime = 0.0
            self.waiting = True
            self.rect.center = (-100,-100) # out of visible screen
            self.crashing = False
            self.frags = 25 # number of framgents if Bird is killed
            self.number = Bird.number # get my personal Birdnumber
            Bird.number+= 1           # increase the number for next Bird
            Bird.birds[self.number] = self # store myself into the Bird dictionary
            print("my number %i Bird number %i and i am a %s " % (self.number, Bird.number, getclassname(self)))
            self.mass = 100.0
            self.angle = 0.0
            self.boostspeed = 10 # speed to fly upward
            self.boostmax = 0.9 # max seconds of "fuel" for flying upward
            self.boostmin = 0.4 # min seconds of "fuel" for flying upward
            self.boosttime = 0.0 # time (fuel) remaining
            warpsound.play()
            for _ in range(8):
                BlueFragment(self.pos) # blue Frags
      
        def kill(self):
            # a shower of red fragments, exploding outward
            for _ in range(self.frags):
                RedFragment(self.pos)
            pygame.sprite.Sprite.kill(self) # kill the actual Bird 
            
        def speedcheck(self):
            #if abs(self.dx) > BIRDSPEEDMAX:
            #   self.dx = BIRDSPEEDMAX * (self.dx/abs(self.dx)) # dx/abs(dx) is 1 or -1
            #if abs(self.dy) > BIRDSPEEDMAX:
            #   self.dy = BIRDSPEEDMAX * (self.dy/abs(self.dy))
            if abs(self.dx) > 0 : 
                self.dx *= FRICTION  # make the Sprite slower over time
            if abs(self.dy) > 0 :
                self.dy *= FRICTION

        def areacheck(self):
            if not self.area.contains(self.rect):
                self.crashing = True # change colour later
                # --- compare self.rect and area.rect
                if self.pos[0] + self.rect.width/2 > self.area.right:
                    self.pos[0] = self.area.right - self.rect.width/2
                    self.dx *= -0.5 # bouncing off but loosing speed
                if self.pos[0] - self.rect.width/2 < self.area.left:
                    self.pos[0] = self.area.left + self.rect.width/2
                    self.dx *= -0.5 # bouncing off the side but loosing speed
                if self.pos[1] + self.rect.height/2 > self.area.bottom:
                    self.pos[1] = self.area.bottom - self.rect.height/2
                    #self.dy *= -1 # bouncing off the ground
                    #if reaching the bottom, the birds get a boost and fly upward to the sky
                    #at the bottom the bird "refuel" a random amount of "fuel" (the boostime)
                    self.dy = 0 # break at the bottom
                    self.dx *= 0.3 # x speed is reduced at the ground
                    self.boosttime = self.boostmin + random.random()* (self.boostmax - self.boostmin)
                if self.pos[1] - self.rect.height/2 < self.area.top:
                    self.pos[1] = self.area.top + self.rect.height/2
                    self.dy = 0 # stop when reaching the sky
                    #self.dy *= -1 
                    self.hitpoints -= 1 # reaching the sky cost 1 hitpoint
        def update(self, seconds):
            #---make Bird only visible after waiting time
            self.lifetime += seconds
            if self.lifetime > (self.waittime):
                self.waiting = False
            if self.waiting:
                self.rect.center = (-100,-100)
            else: # the waiting time (Blue Fragments) is over
                if self.boosttime > 0:   # boost flying upwards ?
                    self.boosttime -= seconds
                    self.dy -= self.boostspeed # upward is negative y !
                    self.ddx = -math.sin(self.angle*GRAD) 
                    self.ddy = -math.cos(self.angle*GRAD) 
                    Smoke(self.rect.center, -self.ddx , -self.ddy )
                self.speedcheck()    # ------------- movement
                self.pos[0] += self.dx * seconds
                self.pos[1] += self.dy * seconds
                self.areacheck() # ------- check if Bird out of screen
                #--- calculate actual image: crasing, bigbird, both, nothing ?
                self.image = Bird.image[self.crashing+self.big] # 0 for not crashing, 1 for crashing
                self.image0 = Bird.image[self.crashing+self.big] # 0 for not crashing, 1 for crashing
                #--------- rotate into direction of movement ------------
                self.angle = math.atan2(-self.dx, -self.dy)/math.pi*180.0 
                self.image = pygame.transform.rotozoom(self.image0,self.angle,1.0)
                #--- calculate new position on screen -----
                self.rect.centerx = round(self.pos[0],0)
                self.rect.centery = round(self.pos[1],0)
                if self.hitpoints <= 0:
                    self.kill()
    
    class SmallBird(Bird):
        """A bird that get pushed around by shots, red fragments and other birds."""
        #gravity = True
        def __init__(self):
            self.big = 0
            Bird.__init__(self)
            Lifebar(self)
        
        def kill(self):
            crysound.play()
            Bird.kill(self)
    
    class BigBird(Bird):
        """A big bird controlled by the player"""
        def __init__(self):
            self.big = 2 # smallsprites have the value 0 for this attribute (.big) -> important for Bird.image
            Bird.__init__(self) # create a "little" Bird but do more than that
            self.hitpoints = float(100)
            self.hitpointsfull = float(100)
            self.image = Bird.image[2] # big bird image
            self.pos = [screen.get_width()/2, screen.get_height()/2]
            self.rect = self.image.get_rect()
            self.angle = 0
            self.speed = 20.0 # base movement speed factor
            self.rotatespeed = 1.0 # rotating speed
            self.frags = 100
            Lifebar(self)
            self.cooldowntime = 0.08 #seconds
            self.cooldown = 0.0
            self.damage = 5 # how many damage one bullet inflict
            self.shots = 0
            self.radius = self.image.get_width() / 2.0
            self.mass = 400.0
        
        def kill(self):
            bombsound.play()
            Bird.kill(self)
            
        def update(self, time):
            """BigBird has its own update method, overwriting the 
               update method from the Bird class"""
            self.lifetime += seconds
            if self.lifetime > (self.waittime):
                self.waiting = False
            if self.waiting:
                self.rect.center = (-100,-100)
            else:
                #--- calculate actual image: crasing, bigbird, both, nothing ?
                self.image = Bird.image[self.crashing+self.big] # 0 for not crashing, 2 for big
                pressedkeys = pygame.key.get_pressed()
                self.ddx = 0.0
                self.ddy = 0.0
                if pressedkeys[pygame.K_w]: # forward
                         self.ddx = -math.sin(self.angle*GRAD) 
                         self.ddy = -math.cos(self.angle*GRAD) 
                         Smoke(self.rect.center, -self.ddx , -self.ddy )
                if pressedkeys[pygame.K_s]: # backward
                         self.ddx = +math.sin(self.angle*GRAD) 
                         self.ddy = +math.cos(self.angle*GRAD) 
                         Smoke(self.rect.center, -self.ddx, -self.ddy )
                if pressedkeys[pygame.K_e]: # right side
                         self.ddx = +math.cos(self.angle*GRAD)
                         self.ddy = -math.sin(self.angle*GRAD)
                         Smoke(self.rect.center, -self.ddx , -self.ddy )
                if pressedkeys[pygame.K_q]: # left side
                         self.ddx = -math.cos(self.angle*GRAD) 
                         self.ddy = +math.sin(self.angle*GRAD) 
                         Smoke(self.rect.center, -self.ddx , -self.ddy )
                # ------------shoot-----------------
                if self.cooldown > 0:
                    self.cooldown -= time 
                else:
                    if pressedkeys[pygame.K_SPACE]: # shoot forward
                        self.ddx = +math.sin(self.angle*GRAD)#recoil
                        self.ddy = +math.cos(self.angle*GRAD)
                        lasersound.play() # play sound
                        self.shots += 1
                        Bullet(self, -math.sin(self.angle*GRAD) ,
                               -math.cos(self.angle*GRAD) )
                    self.cooldown = self.cooldowntime
                # ------------move------------------
                if not self.waiting:
                    self.dx += self.ddx * self.speed
                    self.dy += self.ddy * self.speed
                #self.speedcheck()   # friction, maxspeed             
                self.pos[0] += self.dx * seconds
                self.pos[1] += self.dy * seconds
                # -- check if Bird out of screen
                self.areacheck()
                # ------------- rotate ------------------
                if pressedkeys[pygame.K_a]: # left turn , counterclockwise
                    self.angle += self.rotatespeed
                if pressedkeys[pygame.K_d]: # right turn, clockwise
                    self.angle -= self.rotatespeed
                self.oldcenter = self.rect.center
                self.image = pygame.transform.rotate(self.image, self.angle)
                self.rect = self.image.get_rect()
                self.rect.center = self.oldcenter
                #--- calculate new position on screen -----
                self.rect.centerx = round(self.pos[0],0)
                self.rect.centery = round(self.pos[1],0)
                if self.hitpoints <= 0: # ----- alive---- 
                    self.kill()
            
    class Fragment(pygame.sprite.Sprite):
        """generic Fragment class. Inherits to blue Fragment (implosion),
           red Fragment (explosion), smoke (black) and shots (purple)"""
        def __init__(self, pos, layer = 9):
            self._layer = layer
            pygame.sprite.Sprite.__init__(self, self.groups)
            self.pos = [0.0,0.0]
            self.fragmentmaxspeed = FRAGMENTMAXSPEED# try out other factors !

        def init2(self):  # split the init method into 2 parts for better access from subclasses
            self.image = pygame.Surface((10,10))
            self.image.set_colorkey((0,0,0)) # black transparent
            pygame.draw.circle(self.image, self.color, (5,5), random.randint(2,5))
            self.image = self.image.convert_alpha()
            self.rect = self.image.get_rect()
            self.rect.center = self.pos #if you forget this line the sprite sit in the topleft corner
            self.time = 0.0
            
        def update(self, seconds):
            self.time += seconds
            if self.time > self.lifetime:
                self.kill() 
            self.pos[0] += self.dx * seconds
            self.pos[1] += self.dy * seconds
            self.rect.centerx = round(self.pos[0],0)
            self.rect.centery = round(self.pos[1],0)
    
    class RedFragment(Fragment):
        """explodes outward from (killed) Bird"""
        def __init__(self,pos):
            self.groups = allgroup, fragmentgroup, gravitygroup
            Fragment.__init__(self,pos)
            #red-only part -----------------------------
            self.color = (random.randint(25,255),0,0) # red            
            self.pos[0] = pos[0]
            self.pos[1] = pos[1]
            self.dx = random.randint(-self.fragmentmaxspeed,self.fragmentmaxspeed)
            self.dy = random.randint(-self.fragmentmaxspeed,self.fragmentmaxspeed)
            self.lifetime = 1 + random.random()*3 # max 3 seconds
            self.init2() # continue with generic Fragment class
            self.mass = 48.0
            
    class BlueFragment(Fragment):
        """implode inward toward new Bird (and a bittle outward after
           reaching the target position"""
        def __init__(self, pos):
            self.groups = allgroup 
            Fragment.__init__(self, pos)
            self.target = pos
            self.color = (0,0,random.randint(25,255)) # blue
            self.side = random.randint(1,4)
            if self.side == 1:  # left side
                self.pos[0] = 0   
                self.pos[1] = random.randint(0,screen.get_height())
            elif self.side == 2: # top
                self.pos[0] = random.randint(0,screen.get_width()) 
                self.pos[1] = 0
            elif self.side == 3: #right
                self.pos[0] = screen.get_width() 
                self.pos[1] = random.randint(0,screen.get_height())
            else: #bottom
                self.pos[0] = random.randint(0,screen.get_width()) 
                self.pos[1] = screen.get_height()
            # calculating flytime for one second.. Bird.waittime should be 1.0
            self.dx = (self.target[0] - self.pos[0]) * 1.0 / Bird.waittime
            self.dy = (self.target[1] - self.pos[1]) * 1.0 / Bird.waittime
            self.lifetime = Bird.waittime + random.random() * .5 # a bit more livetime after the Bird appears
            self.init2()
            
    class Smoke(Fragment):
        """black exhaust indicating that the BigBird sprite is moved by
           the player. Exhaust direction is inverse of players movement direction"""
        def __init__(self, pos, dx, dy):
           self.color = ( random.randint(1,50), random.randint(1,50), random.randint(1,50) )
           self.groups = allgroup
           Fragment.__init__(self,pos, 3) # give startpos and layer 
           self.pos[0] = pos[0]
           self.pos[1] = pos[1]
           self.lifetime = 1 + random.random()*2 # max 3 seconds
           Fragment.init2(self)
           self.smokespeed = 120.0 # how fast the smoke leaves the Bird
           self.smokearc = .3 # 0 = thin smoke stream, 1 = 180 Degrees
           arc = self.smokespeed * self.smokearc
           self.dx = dx * self.smokespeed + random.random()*2*arc - arc
           self.dy = dy * self.smokespeed + random.random()*2*arc - arc
           
    class Bullet(Fragment):
        """a bullet flying in the direction of the BigBird's heading. May 
           be subject to gravity"""
        def __init__(self, boss, dx, dy):
            self.color = (200,0,200)
            self.boss = boss
            self.groups = allgroup, bulletgroup, gravitygroup
            Fragment.__init__(self, self.boss.rect.center, 3) # layer behind Bird
            self.pos[0] = self.boss.pos[0]
            self.pos[1] = self.boss.pos[1]
            self.lifetime = 5 # 5 seconds
            self.image = pygame.Surface((4,20))
            self.image.set_colorkey((0,0,0)) # black transparent
            pygame.draw.rect(self.image, self.color, (0,0,4,20) )
            pygame.draw.rect(self.image, (10,0,0), (0,0,4,4)) # point
            self.image = self.image.convert_alpha()
            self.image0 = self.image.copy()
            self.rect = self.image.get_rect()
            self.rect.center = self.boss.rect.center
            self.image = pygame.transform.rotate(self.image, self.boss.angle)
            self.rect = self.image.get_rect()
            self.rect.center = self.boss.rect.center
            self.time = 0.0
            self.bulletspeed = 250.0 # pixel per second ?
            self.bulletarc = 0.05 # perfect shot has 0.0
            arc = self.bulletspeed * self.bulletarc
            self.dx = dx * self.bulletspeed + random.random()*2*arc -arc
            self.dy = dy * self.bulletspeed + random.random()*2*arc -arc
            self.mass = 25.0
            self.angle = self.boss.angle
            
        def update(self, time):
            Fragment.update(self,time)
            #--------- rotate into direction of movement ------------
            self.angle = math.atan2(-self.dx, -self.dy)/math.pi*180.0 
            self.image = pygame.transform.rotozoom(self.image0,self.angle,1.0)
            
    # ----------------- background artwork -------------  
    background = pygame.Surface((screen.get_width(), screen.get_height()))
    background.fill((255,255,255))     # fill white
    background.blit(write("navigate with w,a,s,d and q and e "),(50,40))
    background.blit(write("press SPACE to fire bullets"),(50,70))
    background.blit(write("press g to toggle gravity"), (50, 100))
    background.blit(write("Press ESC to quit "), (50,130))
    background = background.convert()  # jpg can not have transparency
    screen.blit(background, (0,0))     # blit background on screen (overwriting all)
    #-----------------define sprite groups------------------------
    birdgroup = pygame.sprite.Group() 
    bulletgroup = pygame.sprite.Group()
    fragmentgroup = pygame.sprite.Group()
    gravitygroup = pygame.sprite.Group()
    # only the allgroup draws the sprite, so i use LayeredUpdates() instead Group()
    allgroup = pygame.sprite.LayeredUpdates() # more sophisticated, can draw sprites in layers 

    #-------------loading files from data subdirectory -------------------------------
    try: # load images into classes (class variable !). if not possible, draw ugly images
        Bird.image.append(pygame.image.load(os.path.join(folder,"babytux.png")))
        Bird.image.append(pygame.image.load(os.path.join(folder,"babytux_neg.png")))
    except:
        print("no image files 'babytux.png' and 'babytux_neg.png' in subfolder %s" % folder)
        print("therfore drawing ugly sprites instead")
        image = pygame.Surface((32,36))
        image.fill((255,255,255))
        pygame.draw.circle(image, (0,0,0), (16,18), 15,2)
        pygame.draw.polygon(image, (0,0,0), ((32,36),(0,36),(16,0)),1) # triangle
        image.set_colorkey((255,255,255))
        Bird.image.append(image) # alternative ugly image
        image2 = image.copy()
        pygame.draw.circle(image2, (0,0,255), (16,18), 13,0)
        Bird.image.append(image2)
    Bird.image.append(pygame.transform.scale2x(Bird.image[0])) # copy of first image, big bird
    Bird.image.append(pygame.transform.scale2x(Bird.image[1])) # copy of blue image, big bird
    Bird.image[0] = Bird.image[0].convert_alpha()
    Bird.image[1] = Bird.image[1].convert_alpha()
    Bird.image[2] = Bird.image[2].convert_alpha()
    Bird.image[3] = Bird.image[3].convert_alpha()

    try: # ------- load sound -------
        crysound = pygame.mixer.Sound(os.path.join(folder,'claws.ogg'))  #load sound
        warpsound = pygame.mixer.Sound(os.path.join(folder,'wormhole.ogg'))
        bombsound = pygame.mixer.Sound(os.path.join(folder,'bomb.ogg'))
        lasersound = pygame.mixer.Sound(os.path.join(folder,'shoot.ogg'))
        hitsound = pygame.mixer.Sound(os.path.join(folder,'beep.ogg'))
    except:
        print("could not load one of the sound files from folder %s. no sound, sorry" %folder)
    # ------------- before the main loop ----------------------
    screentext = Text()
    clock = pygame.time.Clock()        # create pygame clock object 
    mainloop = True
    FPS = 60                           # desired max. framerate in frames per second. 
    amount = 7 # how many small birds should always be present on the screen
    player = BigBird() # big Bird
    overtime = 15 # time in seconds to admire the explosion of player before the game ends
    gameOver = False
    hits = 0  # how often the player was hitting a small Bird
    quota = 0 # hit/miss quota
    gametime = 60 # how long to play (seconds)
    playtime = 0  # how long the game was played
    gravity = True
        
    while mainloop:
        milliseconds = clock.tick(FPS)  # milliseconds passed since last frame
        seconds = milliseconds / 1000.0 # seconds passed since last frame
        playtime += seconds # keep track of playtime
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                mainloop = False # pygame window closed by user
            elif event.type == pygame.KEYDOWN:
                if event.key == pygame.K_ESCAPE:
                    mainloop = False # user pressed ESC
                elif event.key == pygame.K_x:
                    player.hitpoints -= 1
                    print(player.hitpoints)
                elif event.key == pygame.K_y:
                    player.hitpoints += 1
                    print(player.hitpoints)
                elif event.key == pygame.K_g:
                    gravity = not gravity # toggle gravity
                elif event.key == pygame.K_p: # get sprites at mouse position, print info
                    print("=========================")
                    print( "-----Spritelist---------")
                    spritelist = allgroup.get_sprites_at(pygame.mouse.get_pos())
                    for sprite in spritelist:
                        print(sprite, "Layer:",allgroup.get_layer_of_sprite(sprite))
                    print("------------------------")
         
   
        if player.shots > 0:
            quota = (float(hits)/player.shots )* 100
        pygame.display.set_caption("fps: %.2f gravity: %s hits:%i shots:%i quota:%.2f%%"  % (clock.get_fps(), 
                                     gravity, hits, player.shots, quota))
        # ------ collision detection
        for bird in birdgroup:  # test if a bird collides with another bird
            bird.crashing = False # make bird NOT blue
            # check the Bird.number to make sure the bird is not crashing with himself
            if not bird.waiting: # do not check birds outside the screen
                crashgroup = pygame.sprite.spritecollide(bird, birdgroup, False )
                for crashbird in crashgroup:  # test bird with other bird collision
                    if crashbird.number > bird.number: #avoid checking twice
                        bird.crashing = True # make bird blue
                        crashbird.crashing = True # make other bird blue
                        if not (bird.waiting or crashbird.waiting):
                            elastic_collision(crashbird, bird) # change dx and dy of both birds
                                            
                crashgroup = pygame.sprite.spritecollide(bird, bulletgroup, False)
                for ball in crashgroup:  # test for collision with bullet
                    if ball.boss.number != bird.number:
                        hitsound.play()
                        hits +=1
                        bird.hitpoints -= ball.boss.damage
                        factor =  (ball.mass / bird.mass)
                        bird.dx += ball.dx * factor
                        bird.dy += ball.dy * factor
                        ball.kill()
                        
                crashgroup = pygame.sprite.spritecollide(bird, fragmentgroup, False)
                for frag in crashgroup: # test for red fragments
                    bird.hitpoints -=1
                    factor =  frag.mass / bird.mass
                    bird.dx += frag.dx * factor
                    bird.dy += frag.dy * factor
                    frag.kill()
                    
        if gravity: # ---- gravity check ---
            for thing in gravitygroup:
                thing.dy += FORCE_OF_GRAVITY # gravity suck down all kind of things
                    
        if len(birdgroup) < amount: # create enough SmallBirds
            for _ in range(random.randint(1,3)):
                SmallBird()
        
        # ------game Over ? -------------
        if (player.hitpoints < 1 or playtime > gametime) and not gameOver:
            gameOver = True # do those things once when the game ends
            screentext.newmsg("Game Over. hits/shots: %i/%i quota: %.2f%%" % (hits, player.shots, quota), (255,0,0))
            player.hitpoints = 0 # kill the player into a big explosion
        if gameOver: # overtime to watch score, explosion etc
            overtime -= seconds
            if overtime < 0:
                mainloop = False
        else: # not yet gameOver
            screentext.newmsg("Time left: %.2f" % (gametime - playtime))
        
        # ----------- clear, draw , update, flip -----------------  
        allgroup.clear(screen, background)
        allgroup.update(seconds)
        allgroup.draw(screen)           
        pygame.display.flip()         

if __name__ == "__main__":
    game()
    

1)
the variable is called boosttime
2)
a circle with the radius 1
3)
As you already know, 2 * Pi is the circumference of the unit circle. Because of the internal representation, the constant math.pi is only an approximation of the irrational number Pi.
en/pygame/step017.txt · Last modified: 2020/05/15 22:50 by horst